

UNIVERSITÄT WIEN

VIENNA UNIVERSITY OF

Adaptivität in Lernplattformen – Wie können Lernstile erkannt und berücksichtigt werden?

Sabine Graf

Technische Universität Wien Wissenschafterinnenkolleg Internet Technologien Vienna, Austria sabine.graf@ieee.org

- What are learning styles?
- Why shall we incorporate learning styles?
- How can learning styles be identified in learning management systems
- How can cognitive abilities help in this detection process?
- How can adaptivity with respect to learning styles be presented in LMS?
- Conclusions and Future Research Directions

Complex and partially inconsistent research area

- More than 70 different learning style models
- Lot of research in the last 30 years
- But still several important questions are open
 - What are learning styles?

"a description of the attitudes and behaviours which determine an individual's preferred way of learning" (Honey & Mumford, 1992)

"characteristic strengths and preferences in the ways they [learners] take in and process information" (Felder, 1996)

• Other open issues:

- Are learning styles stable over time?
- How can learning styles be measured?
- Relationships between models are not clear
- Essential questions for incorporating learning styles

 Does students really prefer different ways of learning?
 △ According to educational theories & experiments → yes
 - Does matching/mismatching courses effect learning? According to educational theories → yes Experiments provide inconsistent results

Adaptive systems aim at providing adaptivity

- AHA!
- TANGOW
- INSPIRE
- ...

Limitations

- are either developed for specific content (e.g. accounting) or for specific features (e.g. adaptive quizzes)
- content cannot be reused
- are not often used

- Learning Management Systems (e.g., Moodle, Blackboard, WebCT, ...) are developed to support authors/teachers to create courses
 - provide a lot of different features
 - domain-independent
 - content can be reused in other LMS
 - are often used in e-education
 - provide only little or in most cases no adaptivity

- How to incorporate learning styles in LMS?
 - How to identify learning styles automatically based on the behaviour of learners?
 - How to improve the detection process of learning styles by the use of additional sources?
 - How to provide adaptivity based on learning styles in LMS?

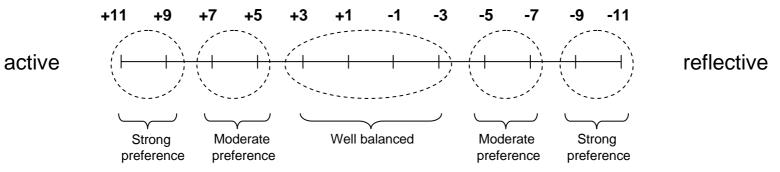
General aims

- Developing and evaluating a concept for LMS in general that enables the systems to incorproate learning styles
- Teachers should have as little as possible additional effort

- Each learner has a preference on each of the dimensions
- Dimensions:
 - Active Reflective learning by doing – learning by thinking things through group work – work alone
 - Sensing Intuitive concrete material – abstract material more practical – more innovative and creative patient / not patient with details standard procedures – challenges
 - Visual Verbal

learning from pictures – learning from words

 Sequential – Global learn in linear steps – learn in large leaps good in using partial knowledge – need "big picture" serial – holistic



Felder-Silverman Learning Style Model (2/2)

Scales of the dimensions:

 \rightarrow Strong preference but no support \rightarrow problems

- Differences to other learning style models:
 - Combines major learning style models (Kolb, Pask, Myers-Briggs Type Indicator)
 - New way of combining and describing learning styles
 - Describes learning style in more detail (Types <-> Scale)
 - Represents also balanced preferences
 - Describes tendencies

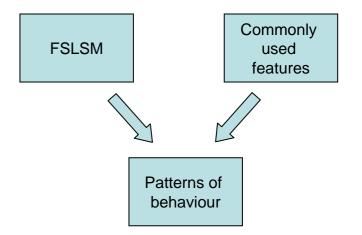
How to identify learning styles?

Collaborative student modelling

- "Index of Learning Styles" (ILS) questionnaire
 - o 44 questions (11 for each dimension)
 - Online available
- Problems with questionnaires
 - Reliability & validity of the instrument
 - Motivate students to fill it out
 - Non-intentional influences
 - Can be done only once

Automatic student modelling

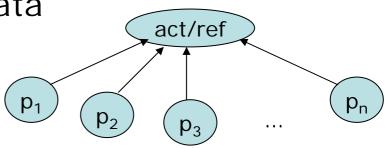
- What are students really doing in an online course?
- Infer their learning styles from their behaviour
- Advantages:
 - Students have no additional effort
 - \circ Can be updated frequently \rightarrow higher tolerance
- Problem/Challenge:
 - Get enough reliable information to build a robust student model
 - \rightarrow certain amount of data about the behaviour
 - → use information related to learning styles as additional source


Determining relevant behaviour

- Incorporated features and patterns Ο
- Classification of occurrence of behaviour \bigcirc
- Relevant patterns for learning style dimensions Ο
- Building a model for inferring learning styles
 - Method for building ordered data \bigcirc
 - Data-driven approach \bigcirc
 - Literature-based approach \bigcirc

Evaluation

- Felder and Silverman describe how learners with specific preferences act in learning situations
- Mapped the behaviour to online-learning
- Only commonly used features are considered:
 - Content objects
 - Outlines
 - Examples
 - Self-assessment tests
 - Exercises
 - Discussion Forum


Active/Reflective	Sensing/Intuitive	Visual/Verbal	Sequential/Global
selfass_visit (+)	ques_detail (+)	forum_visit (-)	ques_detail (+)
exercise_visit (+)	ques_facts (+)	forum_stay (-)	ques_overview (-)
exercise_stay (+)	ques_concepts (-)	forum_post (-)	ques_interpret (-)
example_stay (-)	selfass_visit (+)	ques_graphics (+)	ques_develop (-)
content_visit (-)	selfass_result_duration (+)	ques_text (-)	outline_visit (-)
content_stay (-)	selfass_duration (+)	content_visit (-)	outline_stay (-)
outline_stay (-)	exercise_visit (+)		navigation_skip (-)
selfass_duration (-)	ques_rev_later (+)		overview_visit (-)
selfass_result_duration (-)	ques_develop (-)		overview_stay (-)
selfass_twice_wrong (+)	example_visit (+)		
forum_visit (-)	example_stay (+)		
forum_post (+)	content_visit (-)		
	content_stay (-)		

Data-driven approach

- Using approaches such as Bayesian Networks, Decision Trees, Hidden Markov Model in order to build a model to identify learning styles
- Train the model with data about behaviour and learning styles
- \rightarrow can represents dependencies in the model more accurate
- \rightarrow very much dependent on data

- Literature-based approach
 - Building a model based on literature
 - Based on the idea that behaviour of learners provide hints on their learning styles.
 - Using indications from data and a simple rule-based approach to identify learning styles
- \rightarrow is very general since it is based on literature
- → dependencies in the model might be less accurate

- Study with 75 students
 - Let them fill out the ILS questionnaire
 - Tracked their behaviour in an online course
- Aim was to identify learning styles on a 3-item scale (e.g., active, balanced, reflective)
- Investigated the efficiency of the data-driven approach and the literature-based approach
- Using a measure of precision

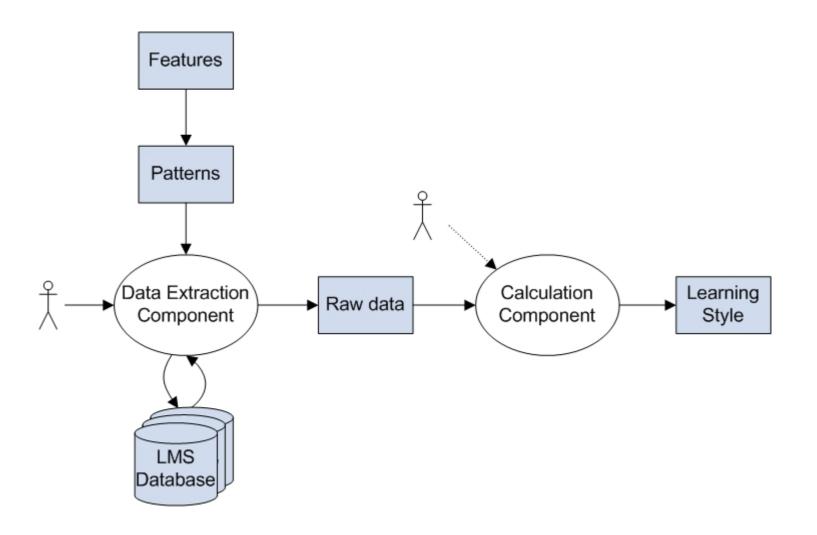
Precision =
$$\frac{\sum_{i=1}^{n} Sim(LS_{predicted}, LS_{ILS})}{n}$$

 Looking at the difference between results from ILS, datadriven approach and literature-based approach

	act/ref	sen/int	vis/ver	seq/glo
data-driven	62.50	65.00	68.75	66.25
literature-based	79.33	77.33	76.67	73.33

Group questions of ILS manually based on their meaning Performed study with 207 participants in order to analyse the relevance of each group for each dimension

Style	Semantic group	Style	Semantic group
Active	trying something out	Reflective	think about material
	social oriented		impersonal oriented
Sensing	existing ways	Intuitive	new ways
	concrete material		abstract material
	careful with details		not carefule with details
Visual	pictures	Verbal	spoken words
			written words
			difficulty with visual style
Sequential	detail oriented	Global	overall picture
	sequential progress		non-sequential progress
	from parts to the whole		relations/connections

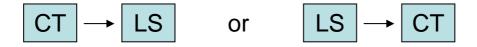


- DeLeS = Detecting Learning Styles
- Basic concept
 - Define relevant patterns of behaviour
 - Extract data about patterns from the LMS database
 - Use literature-based approach to calculate learning styles based on the gathered data
- Requirements
 - Applicable for LMS in general
 - → Usable for different database schemata

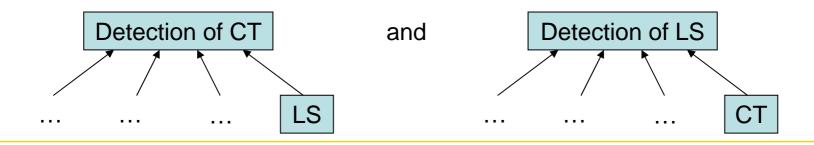
 \rightarrow Deal with missing data since maybe not all information can be tracked by each LMS

Improving the detection of learning styles by using information from cogntive traits

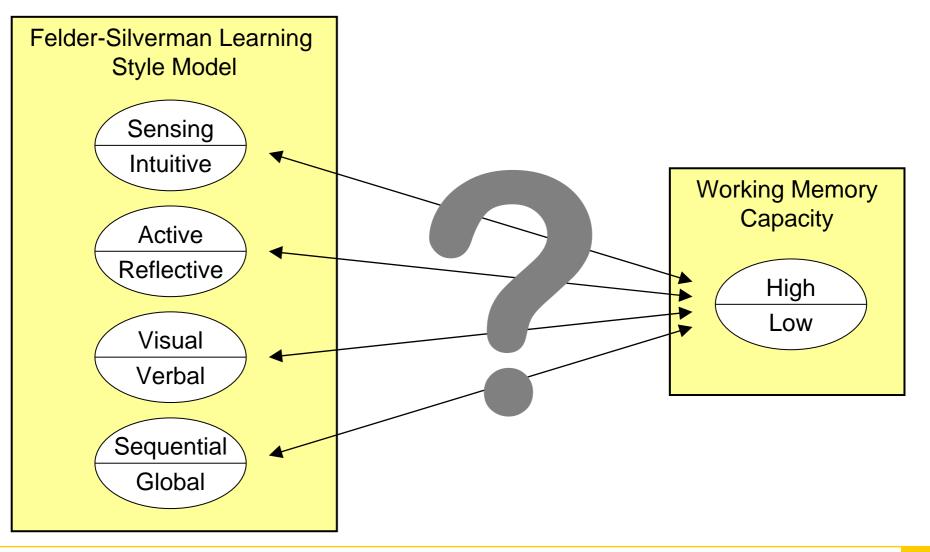
- Investigations about learning styles and cognitive abilities
 - Abilities to perform any of the functions involved in cognition whereby cognition can be defined as the mental process of knowing, including aspects such as awareness, perception, reasoning, and judgment.
 - Cognitive abilities are more or less stable over time
 - Important abilities for learning
 - Working memory capacity
 - Inductive reasoning ability
 - Information processing speed
 - Associative learning skills



Relationship between Cognitive Traits and Learning Styles

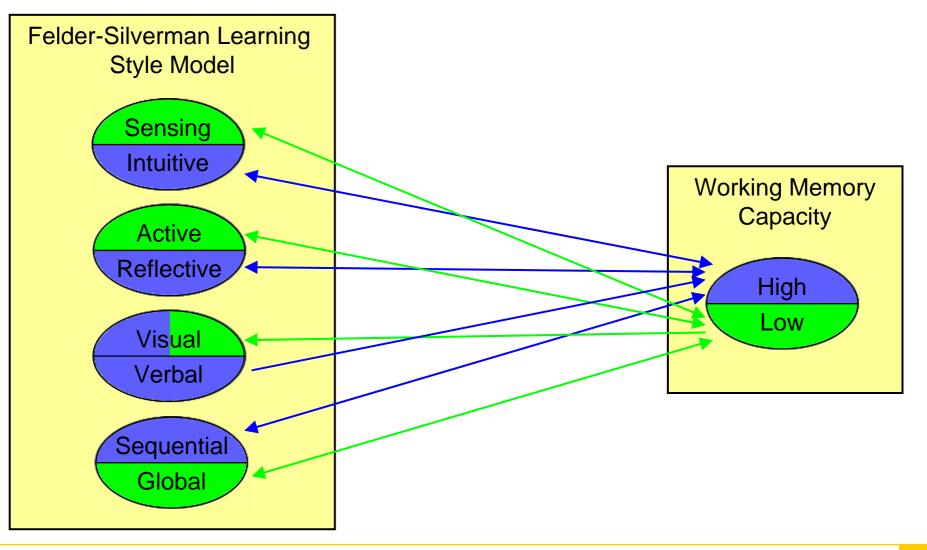


Why shall we relate cognitive traits and learning styles?


Case 1: Only one kind of information (CT and LS) is considered
 → Get some hints about the other one

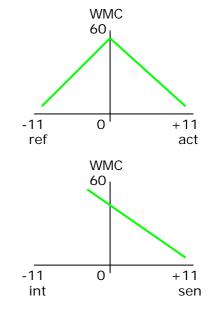
Case 2: Both kinds of information are considered
 The information about the one can be included in the identification process of the other and vice versa
 The student model becomes more reliable

Literature Research



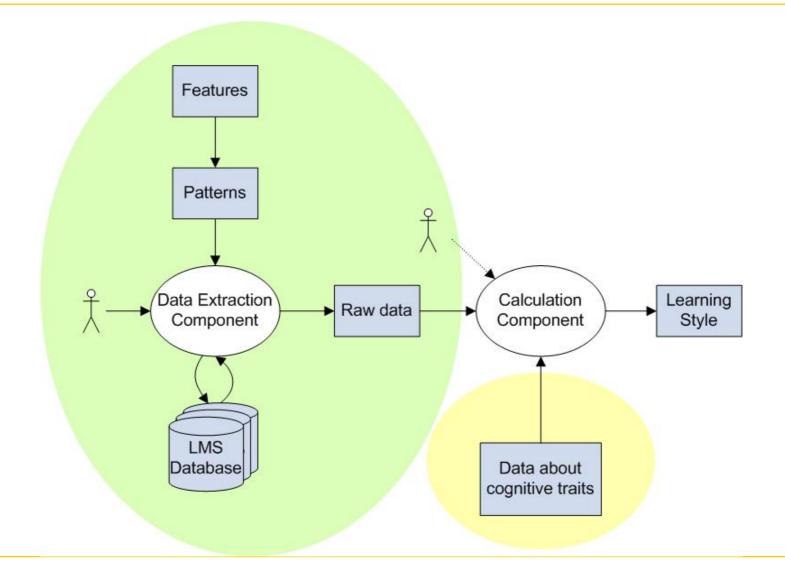
	High WMC	Low WMC		
	Reflective	Active		
	Beacham, Szumko	o, and Alty (2003)		
	Hadwin, Kirby, and Woodhouse (1999)			
	Kolb (1984)			
S	Summerv	ill (1999)		
sion	Witkin et al. (1977)			
Felder-Silverman Learning Style Dimensions	Intuitive	Sensing		
ime	Bahar and Ha	. ,		
	Davis (1991)		
tyl€	Ford and Chen (2000)			
S.	Hudson (1966)			
inç	S Kinshuk and Lin (2005) Scandura (1973)			
arn				
Le	Witkin et a	· · · · ·		
an	Verbal or Visual	Visual		
rm	Beacham, Szumko			
lve	Simmons and Si	•		
S	Wey and Wa			
dei	Sequential	Global		
Le L	Beacham, Szumko, and Alty (2003)			
	Ford and Ch	. ,		
	Huai (2			
	Liu and Reed (1994)			
	Mortimore (2003)			
	Witkin et a	al. (1977)		

	High WMC	Low WMC	
	Field-independent	Field-dependent	
s	Al-Naeme (1991)		
yle	Bahar and Hansell (2000)		
St	El-Banna (1987)		
ive.	Pascual-Leone (1970)		
Init	Divergent	Convergent	
Bahar and Hansell (200 EI-Banna (1987) Pascual-Leone (1970) Divergent Co Bahar and Hansell (200		Hansell (2000)	
0	Serial	Holistic	
	Huai (2000)		



Participants

- 225 students from Austria
- Detecting learning style
 - ILS questionnaire
- Detecting working memory capacity
 - WebOSpan Task


- Active/reflective:
 - Low WMC <-> strong active preference
 - Low WMC <-> strong reflective preference
 - High WMC <-> balanced learning preference
- Sensing/intuitive:
 - Low WMC <-> sensing learning preference
 - High WMC <-> balanced learning preference
- Visual/verbal:
 - Low WMC -> visual learning preference
 - Verbal learning preference -> high WMC
- Sequential/Global:
 - No relationship found
- → Identified relationships can be included in the detection process of learning styles and cognitive traits

Using the information in DeLeS

How to provide adaptivity?

- Develop a concept which enables LMS to automatically generate adaptive courses
- Incorporates only common kinds of learning objects
 - Content
 - Outlines
 - Conclusions
 - Examples
 - Self-assessment tests
 - Exercises
- Requirements for teachers
 - Provide learning objects
 - Annotate learning objects (distinguish between the objects)

Chapter 1:

- **Examples**
- Self-assessment
- **Exercises**
- Outline
- Content with/without outlines between subchapters
- Conclusion
- **Examples**
- Self-assessment
- **Exercises**
- Conclusion
- Chapter 2:

. . .

- Number of examples
- Number of exercises
- Sequence of examples (before or after content)
- Sequence of exercises (before or after content)
- Sequence of self-assessments (before or after content)
- Sequence of outlines (only once before content or between content)
- Sequence of conclusion (after content or at the end of the chapter)

Active learners

- Self-assessments before and after content
- High number of exercises
- Low number of examples
- Outline only at the begin of content
- Conclusions at the end of the chapter
- Reflective learners
 - Outlines between content
 - Conclusion after content
 - Avoid self-assessments before content
 - Examples after content
 - Exercises after content
 - Low number of exercises

Sensing learners

- High number of examples
- Examples before content
- Self-assessment after content
- High number of exercises
- Exercises after content
- Intuitive learners
 - Self-assessment before content
 - Exercises before content
 - Low number of exercises
 - Low number of examples
 - Examples after content
 - Outlines only at the begin of content

Sequential learners

- Outlines only at the begin of content
- Examples after content
- Self-assessment after content
- Exercises after content
- Global learners
 - Outlines between content
 - Conclusion after content
 - High number of examples
 - Avoid self-assessment before content
 - Avoid examples before content
 - Avoid exercises before content

- Active/Reflective = $+11 \rightarrow$ strong active style
- Sensing/Intuitive = $-11 \rightarrow$ strong intuitive style
- Sequential/Global = $-11 \rightarrow$ strong global style
- Number of Exercises
 - Active → high number
 - Intuitive → low number
 - Global → no preference
 - \rightarrow Moderate number of exercises

- Implemented add-on for Moodle (Version 1.6.3)
- University course about object-oriented modelling with about 400 students
- Procedure:
 - Students filled out ILS questionnaire
 - Individual course was automatically generated according to their learning styles
 - Moodle presented the adapted course (as recommendation) to each student
 - Students were nevertheless able to access all learning objects and take a different learning path

Does adaptivity have an effect on learning?

- Research design
 - Three groups:
 - Courses that fits to the students' learning styles (matched group)
 - Courses that do not fit to the students' learning styles (mismatched group)
 - Standard course which includes all learning objects (standard group)

Results:

- Average score on assignments & score on final exam no significant difference
- Time spent on learning activities
 - Standard > Matched
 - Mismatched > Matched
- Number of logins
 - Standard > Matched
- Number of visited learning activities
 - no significant difference
- Number of requests for additional LOs
 - Mismatched > Matched
- \rightarrow Students from the matched group spent significant less time in the course but achieved in average equal grades
- \rightarrow Demonstrates positive effect of adaptivity

Conclusions

- Proposed a method and tool for identifying learning styles
- Investigated the relationship between learning styles and working memory capacity
- Developed and evaluated a concept for providing adaptive courses in LMS

Future Research Directions

- Generalising the adaptive mechanism
- Combine Automatic Student Modelling with Providing Adaptivity
- Dynamic Automatic Student Modelling
- Supporting students in learning with their weak learning style preferences

Sabine Graf http://wit.tuwien.ac.at/people/graf <u>sabine.graf@ieee.org</u>

