

An Approach for Detecting Learning Styles in Learning Management Systems

Sabine Graf
Vienna University of Technology
Austria
graf@wit.tuwien.ac.at

Kinshuk
Massey University
New Zealand
kinshuk@ieee.org

Motivation and Aim

- Learning Management Systems (LMS) are commonly used but they provide only little and in the most cases no adaptivity
- Learners have different needs
- Incorporating these needs increase the learning progress, leads to better performance, and makes learning easier
- Requirement for adaptivity: needs have to be known first
 - Comprehensive questionnaires
 - Identification from the behavior of students during a course

Aim:

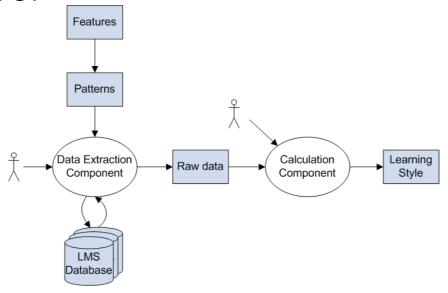
Developed an approach that identifies learning styles according to the behavior of students in LMS

- → Identify patterns of behavior
- → Implemented a tool that extracts data from LMS database and calculates the learning styles

Felder-Silverman Learning Style Model

- Richard M. Felder and Linda K. Silverman, 1988
- Each learner has a preference on each of the four dimensions
- Dimensions:
 - Active Reflective learning by doing – learning by thinking things through learning by discussing & group work – work alone
 - Sensing Intuitive concrete material – abstract material more practical – more innovative and creative patient / not patient with details standard procedures – challenges
 - Visual Verbal learning from pictures – learning from words
 - Sequential Global learn in linear steps – learn in large leaps good in using partial knowledge – need "big picture" interested in details – interested in the overview

Patterns of Behavior


- Felder and Silverman describe how learners with specific preferences act in learning situations
- Based on commonly used features in LMS such as content objects, forum, chat, self-assessment (SA), exercises, and examples

Active/Reflective	Sensing/Intuitive	Visual/Verbal	Sequential/Global
Visits_forum (act)	Correct_facts/concepts (sen)	Visits_forum (ver)	Correct_detail/overview (seq)
Postings_forum (act)	Revisions_marked tests (sen)	Postings_forum (ver)	Performance_marked tests (seq)
Visits_chat (act)	Revisions_SA tests (sen)	Visits_chat (ver)	Performance_SA tests (seq)
Postings_chat (act)	Duration_marked tests (sen)	Postings_chat (ver)	Visits_outline (glo)
Visits_exercise (act)	Duration_SA tests (sen)	Time_graphics (vis)	Time_outline (glo)
Time_exercises (act)	Visits_exercises (int)	Correct_graphics (vis)	Skips_learning objects (glo)
Time_examples (ref)	Time_exercises (int)		Visits_overview page (glo)
Time_content objects (ref)	Visits_SA tests (sen)		Time_overview page (glo)
	Visits_examples (sen)		
	Time_examples (sen)		

Tool Architecture

- Tool can be applied for LMS in general
 - Each LMS has a different database schema
 - Maybe not all features are used or data for patterns can be tracked
- Architecture:

Data Extraction Component

Global schema

- Top-down approach: required information (patterns) act as basis
- Each table includes data representing one pattern
- Extraction should be as simple as possible
 - → use event-based way in which data are stored in LMS
- Cumulation of data is done automatically

Calculation Component

- Calculate ordered data from raw data
 e.g. User 1: 94 % time spend → high → sensing → +1
 - determine thresholds based on values from literature
 - 3-item scale (+1, 0, -1)
 - provide recommendation and teachers can change thresholds
- Calculate learning styles from ordered data
 - Based on approach of questionnaire (ILS)
 - Summing up the values relevant for the dimension
 - Result is converted to 3-item scale (e.g. sensing balanced – intuitive)

Conclusion and Future Work

- Developed an approach and implemented a tool for identifying learning style based on the behavior of students in LMS
 - Identified general patterns of behavior
 - Developed a tool that extracted required data from LMS database and calculated learning styles
- Future work
 - Evaluate the tool (comparing results of the tool with results of ILS)
 - Improve calculation approach (AI approach)