
A UML Profile for Representing Business

Object States in a Data Warehouse⋆

Veronika Stefanov and Beate List

Women’s Postgraduate College for Internet Technologies
Vienna University of Technology

{stefanov, list}@wit.tuwien.ac.at

Abstract. Data Warehouse (DWH) systems allow to analyze business
objects relevant to an enterprise organization (e.g., orders or customers).
Analysts are interested in the states of these business objects: A customer
is either a potential customer, a first time customer, a regular customer
or a past customer; purchase orders may be pending or fullfilled.
Business objects and their states can be distributed over many parts of
the DWH, and appear in measures, dimension attributes, levels, etc.
Surprisingly, this knowledge – how business objects and their states are
represented in the DWH – is not made explicit in existing conceptual
models. We identify a need to make this relationship more accessible.
We introduce the UML Profile for Representing Business Object States in

a DWH. It makes the relationship between the business objects and the
DWH conceptually visible. The UML Profile is applied to an example.

1 Introduction

Data Warehouse (DWH) systems are used by decision makers for performance
measurement and decision support. The data offered by a DWH describes busi-
ness objects relevant to an enterprise organization (e.g., accounts, orders, cus-
tomers, products, and invoices) and allows to analyze their status, development,
and trends. Business objects, also known as domain objects, represent entities
from the “real world enterprise” and should be recognizable to business people,
as opposed to implementation objects (e.g., menu items, database tables).

Business objects can be characterized by the states they have during their
lifecycle. For example, a customer can have different states: There are potential
customers, first time customers, regular customers, customers who pay their bills
on time, fraudulent customers, high volume customers, past customers, etc.

In many organizations today, DWHs have grown over time and become large
and complex. Business objects and their states can be found all over the DWH:
Data relevant to analyzing e.g. customers may be distributed over many parts of

⋆ This research has been funded by the Austrian Federal Ministry for Education,
Science, and Culture, and the European Social Fund (ESF) under grant 31.963/46-
VII/9/2002.



the DWH, and the different states of the customer may appear in many different
ways, i.e. as measures, dimensional attributes, levels, etc. A business object can
easily have 20 states, which might be hidden in just as many facts or even
more: Potential customers in a contacts fact of the marketing data mart, regular
customers in a sales fact, customers who pay on time in a payment transaction
fact, etc.

Surprisingly, this knowledge - how business objects and their states are rep-
resented in the data warehouse - is not made explicit in existing conceptual
models. When new analysis requirements appear, it is often difficult, time con-
suming and costly to find out whether the information about a certain state of
a business object is already contained somewhere in the DWH, or whether the
data model of the DWH has to be extended or changed.

Our goals therefore are to

• make the relationship between the business objects that the uses want to
analyze and the DWH visible and accessible

• show where the business objects and their states can be analyzed in the
DWH

• offer a new perspective on DWHs, which emphasizes business objects and
their states instead of solely fact and dimension tables

• show how the business object states relate to the data model

We achieve these goals by introducing the UML1 Profile or Representing

Business Object States in a DWH (Section 4), which makes the connection be-
tween data warehouses and business object states visible. State machines (Sec-
tion 2) describe how objects change states in reaction to events, and are suitable
for capturing business logic. We relate state machines of business objects to
DWH elements and use them as a new viewpoint on data warehouses. Addition-
ally, using the UML Profile, we define 14 correspondence patterns between state
machines and DWH elements (Section 5).

The contributions of the UML Profile for Representing Business Object
States in a DWH along with the correspondence patterns are:

• It provides a straightforward way to make visible where a business object
such as a customer is available in the DWH and can be analyzed, and how
its various states correspond to facts, dimensions and measures.

• Through the business objects, it offers a bigger picture as it links the needs
of the business organization to the DWH that stores data on business objects
for analytical purposes.

• The Profile for Representing Business Object States in a DWH allows mod-
eling on several levels of detail and thus enables the modeler to choose the
right level of detail for different purposes or target audiences. A high level
overview model shows only the whole business objects and how they are
related to facts and dimensions, where as a more detailed model can show
measures, dimension attributes and hierarchy levels for the individual states
of the object.

1 Unified Modeling Language



• By extending standard UML 2.0 state machines, the UML profile offers reuse
of a well-known notation as well as tool reuse, avoiding costs of learning a
new notation or additional tools.

• The models allow locating business object states in the DWH, and thus
recognizing cases where business object states are not available at all, which
may indicate business requirements that are not yet addressed. If the model
shows that a business object state is available at several locations at the
same time, it can be checked whether this was a deliberate design decision
or whether this indicates a problematic situation.

• Together with the correspondence patterns the models can support the de-
sign phase of a DWH project, as they provide hints on possible facts, mea-
sures and dimensions that can be derived from the business object states.

2 UML State Machines

We use UML 2.0 state machines to model business object states. State machines
in general describe “the possible life histories of an object” [1]. A state machine
comprises a number of states, interconnected by transitions. Events trigger the
transitions. There may be several transitions for one event, and they may be
guarded by conditions (see Fig. 1).

Account

balance: double

+ deposit(amount: double)
+ withdraw(amount: double)
+ isOverdrawn()

overdrawn

deposit(x) withdraw(x)

deposit(x)
[x < −balance]

withdraw(x)
[x < balance]

with
dr

aw
(x

)

[x 
> 

ba
lan

ce
]

deposit(x
)

[x >= −balance]

balanced

Fig. 1. State machine for Account objects

State machines are used for example in Software Engineering to achieve
higher quality software. During the analysis phase of a software development
process, state machines for the main business objects (account, order, etc.) are
modeled. Such a state machine cannot be transformed directly to code, but is
very useful for designers as it allows to recognize “illegal” or conceptually impos-
sible state transitions and thus assess correctness of the final software product.
The UML Profile for Representing Business Object States in a DWH presented
in this paper aims at bringing the power of state machines to Data Warehousing.

Figure 2 gives an overview of state chart elements and their use in UML 2.0.
States may be nested in other states (c), and the so-called sub-machines can
be divided into regions (d). This allows access to the model on various levels of
detail. Figure 3 shows an example state machine. The object modeled here is
the contract between a telecommunications provider and the user of a post-paid
mobile phone.

Before it is signed, the contract is in the state “potential”. After the customer
has signed it, it is registered and a credit check is performed. During this phase,



event [condition]

initial final

fork/join

state A B B

A B

C D

A

(a) Main (b) (c) (d)
notation elements A ∨ B A ∧ B A ∧ (B ∧ (C ∨ D))

Fig. 2. UML State Machines: Syntax and combinations of states

it may become “cancelled”, if the check fails. Otherwise, it the credit is OK, the
overall state is now called “current”, which is a composite state that contains
a lot of detail in terms of substates. If the contract is never signed, it becomes
“past” after one year.

past

registered

cancelled

fully paid

open balance

blocked

exceptionally
profitable

fraudulentnot profitable

potential

indebted

normal

current
closed

contract signed

credit check failed

credit check OK

after: 1 year

after: 1 year
end of contract period

contract
cancelled

block

invoice payment

payment

after due date

fraud recognized[revenue >= 0]

[revenue < 0] [revenue >= x]

[revenue < x]

sm Contract
active

new

renewed

renewal

Fig. 3. State Machine diagram for a post-paid mobile phone contract

“Current” contracts are initially “normal”, “fully paid”, “active”, and “new”,
as indicated by the transition arcs entering the composite state. The three regions
within “current” are concurrent and orthogonal, meaning that at each point in
time the object has a valid state in each of the three regions, and that what
happens in one region does not influence the other regions.

In the first region, the contract starts as “active” and can become “closed”,
either because the contract period ends or because the contract is cancelled
beforehand. If a contract is blocked for some reason, it is neither active nor closed.
Active contracts start as “new” and can become “renewed”. Closed contracts are
moved from “current” to “past” after one year.

The middle region relates to the financial aspects of the contract: Each time
an invoice is issued for a contract, it moves from “fully paid” to “open balance”,
and when the payment for the invoice arrives, it moves back again. If an open
balance is not paid until its due date, the contract is “indebted”. Issues regarding
the amounts of the payments are not shown for sake of clarity (cf. Fig. 1).



In the last region, the movements of the contract object between the states
depend mostly on certain conditions becoming true: If the revenue gained from
this contract supercedes the amount x, it becomes “exceptionally profitable”,
meaning that this customer is very valueable to the company. Whereas, if the
revenue falls below 0, keeping this contract is actually causing financial damage
(i.e. by producing higher costs than monthly payments). The fourth state in
this region is “fraudulent”: It indicates that fraud connected to this contract has
been discovered.

3 Business Objects in the DWH

The aim of our approach is to create conceptual models for making visible where
business objects and their states are available in the DWH. Before we can con-
struct a UML Profile, we have to identify the DWH elements we will use. This
section contains a metamodel of these elements, an overview of the correspon-
dences between the DWH elements and business object states, the user groups
that the UML Profile is aimed at, and finally a tabular overview of the corre-
spondence patterns.

3.1 The Metamodel

Figure 4 shows a metamodel of the elements that may represent business objects
in a DWH. There are different kinds of data repositories, one of which may be
a data mart. Other subtypes of data repositories [2] are not used in this paper
for sake of simplicity. Data repositories contain data objects, which are facts or
entities, depending on the type of the repository. Entities have entity attributes,
whereas facts may have measures. Each fact consists of at least two dimensions,
which may have several levels connected to each other via roll-up relationships.
Dimensions are described by dimension attributes. Facts come in different types:
Transaction facts or snapshot facts, of which there are two sub-types, periodic

and accumulating.
The elements data repository, data mart, fact and entity of this metamodel

(and also the UML Profile) are based on previous work by the authors. See [2]
for a more detailed description.

3.2 Representation of Business Objects and their States in a DWH

Not all elements of this metamodel are useful for all conceptual modeling needs.
We have identified a number of correspondence patterns along with the main
usage scenarios of our approach. They are grouped into three levels and one
additional category: the overview level, the fact level, the attribute level, and
finally correspondences related to aggregation and classification. This subsection
gives an overview; details and examples are given in Section 5.
Overview To show at a glance, where a business object can be found in the

DWH, it can be linked as a whole to several data marts, fact tables, dimen-
sion tables or entities.



Entity

Roll-up Level

Dimension

Fact

Accumulating Snapshot Fact

Periodic Snapshot Fact

Entity AttributeData Mart

Dimension Attribute

Transaction Fact

Snapshot Fact

Measure

type: {transaction, snapshot}

1

1..*

1

1..*

1..*

1..*

1

1

1

1
1

*

*

*

*

2..*

upper

lower

Data ObjectData Repository

Fig. 4. A metamodel of DWH elements used to represent states of business objects

Fact Level The relationship of transitions and states of business objects to dif-
ferent types of fact tables can be shown on this level. As Kimball described in
[3], there are three main types of measurements, which are the fundamental
grains of fact tables: transaction, periodic snapshot, and accumulating snap-

shot. A transaction fact corresponds to a transition between states, whereas
snaphot facts correspond to states.

Attribute Level Showing even more detail, a state of a business object may be
represented by dimensions or measures, whereas the transactions and their
guard conditions are found in measures or dimension attributes.

Aggregation and classification Guard conditions on state transitions may
also appear in aggregation and classification hierarchies. Nested states cor-
respond directly to roll-up relationships.

3.3 User groups

The conceptual model presented here is designed to answer the needs of two
separate types of users:

DWH managers and business users are looking for the big picture, an overview
of what to find where. They will use models showing business objects with cor-
respondences mainly on the overview level (see Section 5.1 below). This allows
them to find answers to questions such as “Which business object is in which
data mart?”, “Is there a fact that corresponds to this business object?”, “If I
have this dimension, does it represent this business object?”

DWH designers and developers need to understand the details of how busi-
ness objects states and transactions between them can be represented in a DWH.
They will use a fine-grained state machine model of a business object mapped to
a data model. The correspondence patterns identified by us give hints on which
elements can be used in the DWH model to represent the characteristics of the
business objects, thus improving the creation and evolution of DWH models.

3.4 Correspondence patterns

Based on an analysis of the main requirements of the user groups, Table 1 gives
an overview of which elements of the UML Profile may be linked to which in the
conceptual model to show how business objects (elements on horizontal lines)



are represented in the DWH, and which elements of the DWH (vertical columns)
can be used to represent the states of the business objects (further details of the
correspondence patterns in Section 5).

Table 1. Correspondence patterns between elements describing business object states
(horizontal) and elements of the DWH (vertical)

F
a
c
t

T
ra

n
sa

c
ti
o
n

F
.

S
n
a
p
sh

o
t

F
.

M
e
a
su

re

D
im

e
n
si
o
n

D
.
A
tt

ri
b
u
te

L
e
v
e
l

R
o
ll
-u

p

E
n
ti
ty

E
.
A
tt

ri
b
u
te

D
a
ta

M
a
rt

Object of State Machine X X X X

State X X X X

Transition X X

Guard condition X X X

Nested States X

4 The UML Profile for Representing Business Object

States in a Data Warehouse

We introduce the UML Profile for Representing Business Object States in a
DWH. It provides an easy to use yet formally founded way to model the corre-
spondences between business object states and DWHs.

The Unified Modeling Language (UML) can be extended and adapted to a
specific application area through the creation of profiles [4]. UML profiles are
special UML packages with the stereotype ≪profile≫. A profile adds elements
while preserving the syntax and semantic of existing UML elements. It contains
stereotypes, constraints and tag definitions.

A stereotype is a model element defined by its name and by the base class(es)
to which it is assigned. Base classes are usually metaclasses from the UML meta-
model, for instance the metaclass Class. A stereotype can have its own notation,
e.g. a special icon.

Constraints are applied to stereotypes in order to enforce restrictions. They
specify pre- or postconditions, invariants, etc., and must comply with the restric-
tions of the base class [4]. We use the Object Constraint Language (OCL) [5]
which is widely used in UML profiles to define constraints in our profile, but any
language, such as a programming language or natural language, may be used.

Tag definitions are additional attributes assigned to a stereotype, specified
as name-value pairs. They have a type and can be used to attach arbitrary
information to model elements.

The UML Profile for Representing Business Object States in a DWH makes
it possible to model how the DWH used to analyze business objects is related
to the lifecycle and states of these objects. Its stereotypes are described in de-
tail in Table 2. These stereotypes can be used directly in UML State Machine
diagrams [4]. In Fig. 5 we show a part of the UML 2 metamodel (light) to il-
lustrate how the stereotypes we designed (dark) fit into to the existing UML



meta-model. The relationships between the stereotypes correspond to the meta-
model presented in Section 3.

«metaclass»
NamedElement

«metaclass»
Class

«metaclass»
State

«metaclass»
Constraint

«metaclass»
Association

«metaclass»
Transition

«stereotype»
Level

«stereotype»
DataObject

«stereotype»
Roll-up

«stereotype»
DimensionAttribute

«stereotype»
EntityAttribute

«stereotype»
Measure

«stereotype»
DataMart

«stereotype»
Dimension

«stereotype»
Entity

«stereotype»
Fact

«stereotype»
SnapshotFact

«stereotype»
TransactionFact

«stereotype»
PeriodicSnapshotFact

«stereotype»
AccumulatingSnapshotFact

«metaclass»
Property

isMultidimensional
: Boolean

«stereotype»
DataRepository

«enumeration»
MeasurementType

transaction
snapshot

type
: MeasurementType

Fig. 5. UML stereotypes for representing business object states in a DWH

We use Class, Association, and Property as base classes for the stereo-
types. This allows us to model their relationships with elements used in state
machines such as State, Transition and Constraint.

Table 2: Stereotype Definitions of the UML Profile for Representing
Business Object States in a DWH (cf. diagrams in Fig. 4 and 5)

Name DataRepository

Base class Class
Description A data repository represents a type of database used in data warehouse environments.
Tag Definition isMultidimensional

Type: AuxiliaryConstructs::PrimitiveTypes::Boolean
Multiplicity: 1
Description: Indicates whether the data model of the DataRepository
is a multidimensional data model

Constraints A DataRepository must be related to at least one DataObject:
self.dataObject->size() >= 1

Name DataMart

Generalization DataRepository
Description A data mart is a departmental subset of a DWH focused on a single subject

area.

DM

Name DataObject

Base class Class
Description A data object is part of the data model contained in a data repository. The stereotypes Fact and

Entity are derived from DataObject.
Constraints A DataObject must belong to exactly one DataRepository:

self.dataRepository.size() = 1

Name Fact

Generalization DataObject
Description A fact is a data object of a multidimensional data model.
Constraints The DataRepository containing a fact must have a multidimensional data

model:
self.oclAsType(DataObject).dataRepository.isMultidimensional = true

The Fact must have at least two Dimensions:
self.dimension->size() >= 2

Name Entity

Generalization DataObject
Description An entity is a data object of an E/R model.
Constraints The DataRepository containing an entity must not have a multidimensional

data model:
not self.oclAsType(DataObject).dataRepository.isMultidimensional

The Entity has at least one EntityAttribute:
self.entityAttribute->size() >= 1

«Entity»

Name TransactionFact

Generalization Fact
Description A TransactionFact contains measures of transactions.
Constraints A TransactionFact may only contain transaction measures.

self.allAttributes->forAll(a | a.oclIsTypeOf(Measure) implies a.type=transaction)

T



Name SnapshotFact

Generalization Fact
Description A Snapshotfact contains snapshot measures, e.g. inventories.
Constraints A SnapshotFact may only contain snapshot measures.

self.allAttributes->forAll(a | a.oclIsTypeOf(Measure) implies a.type=snapshot)

S

Name AccumulatingSnapshotFact

Generalization SnapshotFact
Description The measures of an entry in the AccumulatingSnapshotFact are gathered over

time

aS

Name PeriodicSnapshotFact

Generalization SnapshotFact
Description The measures of a PeriodicSnapshotFact are acquired periodically for all in-

stances

pS

Name Measure

Base class Attribute
Description A numeric Measure is the object of analysis.
Tag Definition measurementType

Type: MeasurementType (Enumeration)
Multiplicity: 1
Description: Indicates the type of measurement: transaction or snapshot

Constraints A Measure must belong to exactly one Fact:
self.fact.size() = 1

«Measure»

Name EntityAttribute

Base class Attribute
Description An attribute to an Entity.
Constraints An EntityAttribute must belong to exactly one Entity:

self.entity.size() = 1

«Entity−
Attribute»

Name Dimension

Base class Class
Description Dimensions provide context for the measures and together are assumed to

uniquely determine them.
Constraints A Dimension is used by at least one Fact:

self.fact->size() >= 1

A Dimension has at least one DimensionAttribute:
self.dimensionAttribute->size() >= 1

«Dimension»

Name DimensionAttribute

Base class Attribute
Description DimensionAttributes describe Dimensions.
Constraints A Dimension Attribute belongs to exactly one Dimension:

self.dimension->size() = 1

Attribute»
«Dimension−

Name Level

Base class Class
Description Levels of Dimensions are used to aggregate Measures.
Constraints A Level belongs to exactly one Dimension:

self.dimension->size() = 1

«Level»

Name Roll-up

Base class Association
Description A Roll-up-Association between two Levels indicates that Measures can be ag-

gregated from the lower to the upper Level.
Constraints A Roll-up-relationship has exactly one upper and one lower Level:

self.upper->size() = 1 and self.lower->size() = 1

5 Correspondence Patterns and Examples

To create conceptual models for making visible where business objects and their
states are available in the DWH, we link elements from DWH conceptual data
models with state machines of business objects. In this section, we apply the
correspondence patterns already introduced in Section 3 to examples.

5.1 Overview level

We can link the business object to one or more data marts to provide an overview
(Figure 6a). Then we can identify where each business object can be analyzed
in the DWH model. A business object may correspond to a fact table (e.g.,
order, shipment, account; Figure 6b), a dimension table (e.g., product, customer,
account), or in the case of a pure E/R-model to an entity.

5.2 Fact level

There are three main types of measurements or fundamental grains of fact ta-
bles: transaction, periodic snapshot, and accumulating snapshot [3]. Looking at



sm Contract

SalesAcquisitions

DM

Marketing

DM

Finance
sm Contract

Fig. 6. The business object “Contract” in the fact “Sales” (left) and data marts (right)

state charts, we find that a transaction fact corresponds to a transition between
states (Fig. 7 (a)), whereas snaphot facts correspond to states. Periodic snap-
shots record the current state for all instances of a business object at regular
intervals (b), whereas accumulating snapshots “follow” each instance as it passes
from state to state, adding values to the record over time (c). In the latter case,
the order in which the values are added must conform to the state chart.

invoice payment
payment

after due date

open balance

indebted

Contract
Transactions T

fully paid

open balance

indebted

Contract 
Monthly Snapshot

pS

fully paid

(c)

(a)

contract signed

credit check failed

credit check OK

after: 1 year

sm Contract

Contract
Aquisition

current

past

cancelled

registered

potential

aS

(b)

Fig. 7. Transitions in transaction facts (a), states in snapshot facts (b, c)

5.3 Attribute level

To provide a more detailed conceptual model, i.e. for DWH design and develop-
ment, this level contains correspondence patterns related to all kinds of attributes
(measures, dimension attributes, entity, attributes, guard conditions).

States A state in a state chart may play several roles in the DWH model.
The most straightforward case is when there is an explicit “status” dimension
(e.g., for account facts, insurance policies, etc.). In this case, several states of
a business object are modeled by the dimension, i.e. as dimension attributes.
Second, a state may be modeled as a measure. For a single state, this measure
is of type boolean (either the object is in this state of not), and for several
states, the measure would be an enumeration with the values corresponding to
the states (which may be seen as a degenerate type of the status dimension).

Transitions Transitions in state charts may be guarded by conditions. These
conditions often are found in the DWH as measures or dimension attributes. If



a guard condition contains a recognizable variable (e.g. “revenue” in Fig. 8(a)),
this variable can turn into a measure in the DWH model.

exceptionally
profitable

fraud recognized[revenue >= 0]

[revenue < 0] [revenue >= x]

[revenue < x]

Contract
Monthly Snapshot

T

Contract
Transactions

Contract
Monthly Snapshot

«Dimension»
Status

«DimensionAttribute»
status: Enumeration

{excep_profit, normal, 
not_profit, fraudulent}

«Measure»
revenue

not profitable

normal

fraudulent

pS
«Measure»

fraudulent: Boolean

pS

(a)

(b)

(c)

Fig. 8. Guard condition as measure (a), states as measure (b) or dimension (c)

5.4 Aggregation and classification

State charts of business objects may also provide hints regarding aggregation and
classification hierarchies. First, nested states correspond to roll-up relationships,
the inner state being the special case and the outer state the more general. Also,
guard conditions may define levels in the hierarchy, as they separate instances
into groups. In the case of a specific “status” dimension mentioned above, the
states covered by this dimension then may also correspond to levels.

rolls-up «Level»
All active

«Level»
All renewed

«Dimension»
Contract

active

new

renewed

renewal

Fig. 9. Nested states of a business object correspond to a roll-up relationship

6 Related Work

Using UML Profiles to model the structure and behavior of Data Warehouses as
well as related aspects such as ETL processes has become increasingly popular,
also due to the rise of the Model-Driven Architecture (MDA [6]).

Trujillo and Luján-Mora introduced a Data Warehouse design framework in
[7], which is supported among others by the UML Profile for Modeling ETL
processes [8], a Profile for Physical Modeling of Data Warehouses [9], and a
Profile for Multidimensional Modeling [10].

UML has also been applied to aspects such as DWH security. Fernandez-
Medina et al. have extended UML for Designing Secure Datawarehouses [11].

In [12], Mazon et al. show how the MDA can be applied to Data Warehousing.
Our contribution widens the scope of conceptual modelling in Data Warehousing
to include more than structural models.



7 Conclusion

In this work, we have addressed that fact that there are no existing models
for describing how business objects and their states are represented in a DWH.
Business object states can be distributed over many parts of the DWH, and
appear in measures, dimension attributes, levels, etc.

We introduced the UML Profile for Representing the Lifecycle of Business

Objects in a Data Warehouse. It makes the relationship between the business ob-
jects and the DWH visible and accessible, as it allows to model various elements
of DWHs and their data models in combination with UML 2.0 state machines.
Using the UML Profile, we identified 14 correspondence patterns between state
machines and DWH. The UML Profile and the correspondences are applied to
an example.

References

1. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual. 2 edn. Addison-Wesley (2004)

2. Stefanov, V., List, B., Korherr, B.: Extending UML 2 Activity Diagrams with
Business Intelligence Objects. In: Proceedings of the 7th International Conference
on Data Warehousing and Knowledge Discovery, DaWaK 2005. Volume 3589 of
Lecture Notes in Computer Science., Springer (2005) 53–63

3. Kimball, R.: Fundamental Grains. Intelligent Enterprise 2(5) (1999)
4. Object Management Group, Inc.: UML 2.0 Superstructure.

http://www.omg.org/cgi-bin/apps/doc?formal/05-07-04.pdf (2005)
5. Object Management Group, Inc.: UML 2.0 Object Constraint Language (OCL)

Specification. http://www.omg.org/cgi-bin/apps/doc?ptc/05-06-06.pdf (2005)
6. Object Management Group, Inc.: Model Driven Architecture (MDA).

http://www.omg.org/cgi-bin/doc?formal/03-06-01 (2004)
7. Luján-Mora, S., Trujillo, J.: A Data Warehouse Engineering Process. In: Advances

in Information Systems, ADVIS 2004, LNCS 3261, Springer (2004) 14–23
8. Trujillo, J., Luján-Mora, S.: A UML Based Approach for Modeling ETL Processes

in Data Warehouses. In: Conceptual Modeling - ER 2003. Volume 2813 of LNCS.,
Springer (2003) 307–320

9. Luján-Mora, S., Trujillo, J.: Physical modeling of data warehouses using UML. In:
DOLAP 2004, Proceedings, ACM (2004) 48–57

10. Luján-Mora, S., Trujillo, J., Song, I.Y.: A UML profile for multidimensional mod-
eling in data warehouses. Data Knowl. Eng. 59(3) (2006) 725–769

11. Fernández-Medina, E., Trujillo, J., Villarroel, R., Piattini, M.: Extending UML for
Designing Secure Data Warehouses. In: Conceptual Modeling - ER 2004. Volume
3288 of LNCS., Springer (2004) 217–230

12. Mazon, J.N., Trujillo, J., Serrano, M., Piattini, M.: Applying MDA to the devel-
opment of data warehouses. In: Proceedings DOLAP ’05, New York, NY, USA,
ACM Press (2005) 57–66


